\left\{ \begin{array} { c } { 4 x - y = - 9 } \\ { 2 x + 2 y = - 2 } \end{array} \right.
Whakaoti mō x, y
x=-2
y=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x-y=-9,2x+2y=-2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x-y=-9
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=y-9
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{4}\left(y-9\right)
Whakawehea ngā taha e rua ki te 4.
x=\frac{1}{4}y-\frac{9}{4}
Whakareatia \frac{1}{4} ki te y-9.
2\left(\frac{1}{4}y-\frac{9}{4}\right)+2y=-2
Whakakapia te \frac{-9+y}{4} mō te x ki tērā atu whārite, 2x+2y=-2.
\frac{1}{2}y-\frac{9}{2}+2y=-2
Whakareatia 2 ki te \frac{-9+y}{4}.
\frac{5}{2}y-\frac{9}{2}=-2
Tāpiri \frac{y}{2} ki te 2y.
\frac{5}{2}y=\frac{5}{2}
Me tāpiri \frac{9}{2} ki ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1-9}{4}
Whakaurua te 1 mō y ki x=\frac{1}{4}y-\frac{9}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-2
Tāpiri -\frac{9}{4} ki te \frac{1}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-2,y=1
Kua oti te pūnaha te whakatau.
4x-y=-9,2x+2y=-2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&-1\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\-2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&-1\\2&2\end{matrix}\right))\left(\begin{matrix}4&-1\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\2&2\end{matrix}\right))\left(\begin{matrix}-9\\-2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&-1\\2&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\2&2\end{matrix}\right))\left(\begin{matrix}-9\\-2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\2&2\end{matrix}\right))\left(\begin{matrix}-9\\-2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{4\times 2-\left(-2\right)}&-\frac{-1}{4\times 2-\left(-2\right)}\\-\frac{2}{4\times 2-\left(-2\right)}&\frac{4}{4\times 2-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-9\\-2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{10}\\-\frac{1}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}-9\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\left(-9\right)+\frac{1}{10}\left(-2\right)\\-\frac{1}{5}\left(-9\right)+\frac{2}{5}\left(-2\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=-2,y=1
Tangohia ngā huānga poukapa x me y.
4x-y=-9,2x+2y=-2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 4x+2\left(-1\right)y=2\left(-9\right),4\times 2x+4\times 2y=4\left(-2\right)
Kia ōrite ai a 4x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
8x-2y=-18,8x+8y=-8
Whakarūnātia.
8x-8x-2y-8y=-18+8
Me tango 8x+8y=-8 mai i 8x-2y=-18 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-2y-8y=-18+8
Tāpiri 8x ki te -8x. Ka whakakore atu ngā kupu 8x me -8x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-10y=-18+8
Tāpiri -2y ki te -8y.
-10y=-10
Tāpiri -18 ki te 8.
y=1
Whakawehea ngā taha e rua ki te -10.
2x+2=-2
Whakaurua te 1 mō y ki 2x+2y=-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x=-4
Me tango 2 mai i ngā taha e rua o te whārite.
x=-2
Whakawehea ngā taha e rua ki te 2.
x=-2,y=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}