\left\{ \begin{array} { c } { 3 x + 2 y + 2 z = - 2 } \\ { 2 x + y - z = - 2 } \\ { x - 3 y + z = 0 } \end{array} \right.
Whakaoti mō x, y, z
x=-\frac{10}{13}\approx -0.769230769
y=-\frac{2}{13}\approx -0.153846154
z=\frac{4}{13}\approx 0.307692308
Tohaina
Kua tāruatia ki te papatopenga
2x+y-z=-2 3x+2y+2z=-2 x-3y+z=0
Me raupapa anō ngā whārite.
y=-2x+z-2
Me whakaoti te 2x+y-z=-2 mō y.
3x+2\left(-2x+z-2\right)+2z=-2 x-3\left(-2x+z-2\right)+z=0
Whakakapia te -2x+z-2 mō te y i te whārite tuarua me te tuatoru.
x=4z-2 z=\frac{7}{2}x+3
Me whakaoti ēnei whārite mō x me z takitahi.
z=\frac{7}{2}\left(4z-2\right)+3
Whakakapia te 4z-2 mō te x i te whārite z=\frac{7}{2}x+3.
z=\frac{4}{13}
Me whakaoti te z=\frac{7}{2}\left(4z-2\right)+3 mō z.
x=4\times \frac{4}{13}-2
Whakakapia te \frac{4}{13} mō te z i te whārite x=4z-2.
x=-\frac{10}{13}
Tātaitia te x i te x=4\times \frac{4}{13}-2.
y=-2\left(-\frac{10}{13}\right)+\frac{4}{13}-2
Whakakapia te -\frac{10}{13} mō te x me te \frac{4}{13} mō z i te whārite y=-2x+z-2.
y=-\frac{2}{13}
Tātaitia te y i te y=-2\left(-\frac{10}{13}\right)+\frac{4}{13}-2.
x=-\frac{10}{13} y=-\frac{2}{13} z=\frac{4}{13}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}