\left\{ \begin{array} { c } { 2 x + 3 y = x - 4 } \\ { 4 x - 3 y + z = 2 } \\ { x - y + z = 1 } \end{array} \right.
Whakaoti mō x, y, z
x=-\frac{5}{11}\approx -0.454545455
y = -\frac{13}{11} = -1\frac{2}{11} \approx -1.181818182
z=\frac{3}{11}\approx 0.272727273
Tohaina
Kua tāruatia ki te papatopenga
4x-3y+z=2 2x+3y=x-4 x-y+z=1
Me raupapa anō ngā whārite.
z=-4x+3y+2
Me whakaoti te 4x-3y+z=2 mō z.
x-y-4x+3y+2=1
Whakakapia te -4x+3y+2 mō te z i te whārite x-y+z=1.
y=-\frac{1}{3}x-\frac{4}{3} x=\frac{2}{3}y+\frac{1}{3}
Me whakaoti te whārite tuarua mō y me te whārite tuatoru mō x.
x=\frac{2}{3}\left(-\frac{1}{3}x-\frac{4}{3}\right)+\frac{1}{3}
Whakakapia te -\frac{1}{3}x-\frac{4}{3} mō te y i te whārite x=\frac{2}{3}y+\frac{1}{3}.
x=-\frac{5}{11}
Me whakaoti te x=\frac{2}{3}\left(-\frac{1}{3}x-\frac{4}{3}\right)+\frac{1}{3} mō x.
y=-\frac{1}{3}\left(-\frac{5}{11}\right)-\frac{4}{3}
Whakakapia te -\frac{5}{11} mō te x i te whārite y=-\frac{1}{3}x-\frac{4}{3}.
y=-\frac{13}{11}
Tātaitia te y i te y=-\frac{1}{3}\left(-\frac{5}{11}\right)-\frac{4}{3}.
z=-4\left(-\frac{5}{11}\right)+3\left(-\frac{13}{11}\right)+2
Whakakapia te -\frac{13}{11} mō te y me te -\frac{5}{11} mō x i te whārite z=-4x+3y+2.
z=\frac{3}{11}
Tātaitia te z i te z=-4\left(-\frac{5}{11}\right)+3\left(-\frac{13}{11}\right)+2.
x=-\frac{5}{11} y=-\frac{13}{11} z=\frac{3}{11}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}