Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y, z
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x-3y+z=2 2x+3y=x-4 x-y+z=1
Me raupapa anō ngā whārite.
z=-4x+3y+2
Me whakaoti te 4x-3y+z=2 mō z.
x-y-4x+3y+2=1
Whakakapia te -4x+3y+2 mō te z i te whārite x-y+z=1.
y=-\frac{1}{3}x-\frac{4}{3} x=\frac{2}{3}y+\frac{1}{3}
Me whakaoti te whārite tuarua mō y me te whārite tuatoru mō x.
x=\frac{2}{3}\left(-\frac{1}{3}x-\frac{4}{3}\right)+\frac{1}{3}
Whakakapia te -\frac{1}{3}x-\frac{4}{3} mō te y i te whārite x=\frac{2}{3}y+\frac{1}{3}.
x=-\frac{5}{11}
Me whakaoti te x=\frac{2}{3}\left(-\frac{1}{3}x-\frac{4}{3}\right)+\frac{1}{3} mō x.
y=-\frac{1}{3}\left(-\frac{5}{11}\right)-\frac{4}{3}
Whakakapia te -\frac{5}{11} mō te x i te whārite y=-\frac{1}{3}x-\frac{4}{3}.
y=-\frac{13}{11}
Tātaitia te y i te y=-\frac{1}{3}\left(-\frac{5}{11}\right)-\frac{4}{3}.
z=-4\left(-\frac{5}{11}\right)+3\left(-\frac{13}{11}\right)+2
Whakakapia te -\frac{13}{11} mō te y me te -\frac{5}{11} mō x i te whārite z=-4x+3y+2.
z=\frac{3}{11}
Tātaitia te z i te z=-4\left(-\frac{5}{11}\right)+3\left(-\frac{13}{11}\right)+2.
x=-\frac{5}{11} y=-\frac{13}{11} z=\frac{3}{11}
Kua oti te pūnaha te whakatau.