\left\{ \begin{array} { c } { 2 x + 3 y = 7 } \\ { 4 x - 3 y + z = - 2 } \\ { x - y + z = 1 } \end{array} \right.
Whakaoti mō x, y, z
x=\frac{5}{13}\approx 0.384615385
y = \frac{27}{13} = 2\frac{1}{13} \approx 2.076923077
z = \frac{35}{13} = 2\frac{9}{13} \approx 2.692307692
Tohaina
Kua tāruatia ki te papatopenga
4x-3y+z=-2 2x+3y=7 x-y+z=1
Me raupapa anō ngā whārite.
z=-4x+3y-2
Me whakaoti te 4x-3y+z=-2 mō z.
x-y-4x+3y-2=1
Whakakapia te -4x+3y-2 mō te z i te whārite x-y+z=1.
y=-\frac{2}{3}x+\frac{7}{3} x=\frac{2}{3}y-1
Me whakaoti te whārite tuarua mō y me te whārite tuatoru mō x.
x=\frac{2}{3}\left(-\frac{2}{3}x+\frac{7}{3}\right)-1
Whakakapia te -\frac{2}{3}x+\frac{7}{3} mō te y i te whārite x=\frac{2}{3}y-1.
x=\frac{5}{13}
Me whakaoti te x=\frac{2}{3}\left(-\frac{2}{3}x+\frac{7}{3}\right)-1 mō x.
y=-\frac{2}{3}\times \frac{5}{13}+\frac{7}{3}
Whakakapia te \frac{5}{13} mō te x i te whārite y=-\frac{2}{3}x+\frac{7}{3}.
y=\frac{27}{13}
Tātaitia te y i te y=-\frac{2}{3}\times \frac{5}{13}+\frac{7}{3}.
z=-4\times \frac{5}{13}+3\times \frac{27}{13}-2
Whakakapia te \frac{27}{13} mō te y me te \frac{5}{13} mō x i te whārite z=-4x+3y-2.
z=\frac{35}{13}
Tātaitia te z i te z=-4\times \frac{5}{13}+3\times \frac{27}{13}-2.
x=\frac{5}{13} y=\frac{27}{13} z=\frac{35}{13}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}