\left\{ \begin{array} { c } { 2 x + 3 y = 13 } \\ { - 6 x + y = 11 } \end{array} \right.
Whakaoti mō x, y
x=-1
y=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+3y=13,-6x+y=11
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+3y=13
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-3y+13
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-3y+13\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{3}{2}y+\frac{13}{2}
Whakareatia \frac{1}{2} ki te -3y+13.
-6\left(-\frac{3}{2}y+\frac{13}{2}\right)+y=11
Whakakapia te \frac{-3y+13}{2} mō te x ki tērā atu whārite, -6x+y=11.
9y-39+y=11
Whakareatia -6 ki te \frac{-3y+13}{2}.
10y-39=11
Tāpiri 9y ki te y.
10y=50
Me tāpiri 39 ki ngā taha e rua o te whārite.
y=5
Whakawehea ngā taha e rua ki te 10.
x=-\frac{3}{2}\times 5+\frac{13}{2}
Whakaurua te 5 mō y ki x=-\frac{3}{2}y+\frac{13}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-15+13}{2}
Whakareatia -\frac{3}{2} ki te 5.
x=-1
Tāpiri \frac{13}{2} ki te -\frac{15}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-1,y=5
Kua oti te pūnaha te whakatau.
2x+3y=13,-6x+y=11
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&3\\-6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\11\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&3\\-6&1\end{matrix}\right))\left(\begin{matrix}2&3\\-6&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-6&1\end{matrix}\right))\left(\begin{matrix}13\\11\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&3\\-6&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-6&1\end{matrix}\right))\left(\begin{matrix}13\\11\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-6&1\end{matrix}\right))\left(\begin{matrix}13\\11\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-3\left(-6\right)}&-\frac{3}{2-3\left(-6\right)}\\-\frac{-6}{2-3\left(-6\right)}&\frac{2}{2-3\left(-6\right)}\end{matrix}\right)\left(\begin{matrix}13\\11\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20}&-\frac{3}{20}\\\frac{3}{10}&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}13\\11\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20}\times 13-\frac{3}{20}\times 11\\\frac{3}{10}\times 13+\frac{1}{10}\times 11\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\5\end{matrix}\right)
Mahia ngā tātaitanga.
x=-1,y=5
Tangohia ngā huānga poukapa x me y.
2x+3y=13,-6x+y=11
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-6\times 2x-6\times 3y=-6\times 13,2\left(-6\right)x+2y=2\times 11
Kia ōrite ai a 2x me -6x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
-12x-18y=-78,-12x+2y=22
Whakarūnātia.
-12x+12x-18y-2y=-78-22
Me tango -12x+2y=22 mai i -12x-18y=-78 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-18y-2y=-78-22
Tāpiri -12x ki te 12x. Ka whakakore atu ngā kupu -12x me 12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-20y=-78-22
Tāpiri -18y ki te -2y.
-20y=-100
Tāpiri -78 ki te -22.
y=5
Whakawehea ngā taha e rua ki te -20.
-6x+5=11
Whakaurua te 5 mō y ki -6x+y=11. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-6x=6
Me tango 5 mai i ngā taha e rua o te whārite.
x=-1
Whakawehea ngā taha e rua ki te -6.
x=-1,y=5
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}