\left\{ \begin{array} { c } { 0.4 ( 3 x + 1 ) - 0.2 ( 2 x + y ) = - 0.4 } \\ { 3 ( 0.4 x - 0.5 ) + 5 ( 0.3 y - 1.1 ) = - 2.8 } \end{array} \right.
Whakaoti mō x, y
x=-0.25
y=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
1.2x+0.4-0.2\left(2x+y\right)=-0.4
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 0.4 ki te 3x+1.
1.2x+0.4-0.4x-0.2y=-0.4
Whakamahia te āhuatanga tohatoha hei whakarea te -0.2 ki te 2x+y.
0.8x+0.4-0.2y=-0.4
Pahekotia te 1.2x me -0.4x, ka 0.8x.
0.8x-0.2y=-0.4-0.4
Tangohia te 0.4 mai i ngā taha e rua.
0.8x-0.2y=-0.8
Tangohia te 0.4 i te -0.4, ka -0.8.
1.2x-1.5+5\left(0.3y-1.1\right)=-2.8
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 0.4x-0.5.
1.2x-1.5+1.5y-5.5=-2.8
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te 0.3y-1.1.
1.2x-7+1.5y=-2.8
Tangohia te 5.5 i te -1.5, ka -7.
1.2x+1.5y=-2.8+7
Me tāpiri te 7 ki ngā taha e rua.
1.2x+1.5y=4.2
Tāpirihia te -2.8 ki te 7, ka 4.2.
0.8x-0.2y=-0.8,1.2x+1.5y=4.2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
0.8x-0.2y=-0.8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
0.8x=0.2y-0.8
Me tāpiri \frac{y}{5} ki ngā taha e rua o te whārite.
x=1.25\left(0.2y-0.8\right)
Whakawehea ngā taha e rua o te whārite ki te 0.8, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=0.25y-1
Whakareatia 1.25 ki te \frac{y-4}{5}.
1.2\left(0.25y-1\right)+1.5y=4.2
Whakakapia te \frac{y}{4}-1 mō te x ki tērā atu whārite, 1.2x+1.5y=4.2.
0.3y-1.2+1.5y=4.2
Whakareatia 1.2 ki te \frac{y}{4}-1.
1.8y-1.2=4.2
Tāpiri \frac{3y}{10} ki te \frac{3y}{2}.
1.8y=5.4
Me tāpiri 1.2 ki ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua o te whārite ki te 1.8, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=0.25\times 3-1
Whakaurua te 3 mō y ki x=0.25y-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=0.75-1
Whakareatia 0.25 ki te 3.
x=-0.25
Tāpiri -1 ki te 0.75.
x=-0.25,y=3
Kua oti te pūnaha te whakatau.
1.2x+0.4-0.2\left(2x+y\right)=-0.4
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 0.4 ki te 3x+1.
1.2x+0.4-0.4x-0.2y=-0.4
Whakamahia te āhuatanga tohatoha hei whakarea te -0.2 ki te 2x+y.
0.8x+0.4-0.2y=-0.4
Pahekotia te 1.2x me -0.4x, ka 0.8x.
0.8x-0.2y=-0.4-0.4
Tangohia te 0.4 mai i ngā taha e rua.
0.8x-0.2y=-0.8
Tangohia te 0.4 i te -0.4, ka -0.8.
1.2x-1.5+5\left(0.3y-1.1\right)=-2.8
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 0.4x-0.5.
1.2x-1.5+1.5y-5.5=-2.8
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te 0.3y-1.1.
1.2x-7+1.5y=-2.8
Tangohia te 5.5 i te -1.5, ka -7.
1.2x+1.5y=-2.8+7
Me tāpiri te 7 ki ngā taha e rua.
1.2x+1.5y=4.2
Tāpirihia te -2.8 ki te 7, ka 4.2.
0.8x-0.2y=-0.8,1.2x+1.5y=4.2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}0.8&-0.2\\1.2&1.5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-0.8\\4.2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}0.8&-0.2\\1.2&1.5\end{matrix}\right))\left(\begin{matrix}0.8&-0.2\\1.2&1.5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.8&-0.2\\1.2&1.5\end{matrix}\right))\left(\begin{matrix}-0.8\\4.2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}0.8&-0.2\\1.2&1.5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.8&-0.2\\1.2&1.5\end{matrix}\right))\left(\begin{matrix}-0.8\\4.2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.8&-0.2\\1.2&1.5\end{matrix}\right))\left(\begin{matrix}-0.8\\4.2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1.5}{0.8\times 1.5-\left(-0.2\times 1.2\right)}&-\frac{-0.2}{0.8\times 1.5-\left(-0.2\times 1.2\right)}\\-\frac{1.2}{0.8\times 1.5-\left(-0.2\times 1.2\right)}&\frac{0.8}{0.8\times 1.5-\left(-0.2\times 1.2\right)}\end{matrix}\right)\left(\begin{matrix}-0.8\\4.2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{24}&\frac{5}{36}\\-\frac{5}{6}&\frac{5}{9}\end{matrix}\right)\left(\begin{matrix}-0.8\\4.2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{24}\left(-0.8\right)+\frac{5}{36}\times 4.2\\-\frac{5}{6}\left(-0.8\right)+\frac{5}{9}\times 4.2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-0.25\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=-0.25,y=3
Tangohia ngā huānga poukapa x me y.
1.2x+0.4-0.2\left(2x+y\right)=-0.4
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 0.4 ki te 3x+1.
1.2x+0.4-0.4x-0.2y=-0.4
Whakamahia te āhuatanga tohatoha hei whakarea te -0.2 ki te 2x+y.
0.8x+0.4-0.2y=-0.4
Pahekotia te 1.2x me -0.4x, ka 0.8x.
0.8x-0.2y=-0.4-0.4
Tangohia te 0.4 mai i ngā taha e rua.
0.8x-0.2y=-0.8
Tangohia te 0.4 i te -0.4, ka -0.8.
1.2x-1.5+5\left(0.3y-1.1\right)=-2.8
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 0.4x-0.5.
1.2x-1.5+1.5y-5.5=-2.8
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te 0.3y-1.1.
1.2x-7+1.5y=-2.8
Tangohia te 5.5 i te -1.5, ka -7.
1.2x+1.5y=-2.8+7
Me tāpiri te 7 ki ngā taha e rua.
1.2x+1.5y=4.2
Tāpirihia te -2.8 ki te 7, ka 4.2.
0.8x-0.2y=-0.8,1.2x+1.5y=4.2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
1.2\times 0.8x+1.2\left(-0.2\right)y=1.2\left(-0.8\right),0.8\times 1.2x+0.8\times 1.5y=0.8\times 4.2
Kia ōrite ai a \frac{4x}{5} me \frac{6x}{5}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1.2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 0.8.
0.96x-0.24y=-0.96,0.96x+1.2y=3.36
Whakarūnātia.
0.96x-0.96x-0.24y-1.2y=\frac{-24-84}{25}
Me tango 0.96x+1.2y=3.36 mai i 0.96x-0.24y=-0.96 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-0.24y-1.2y=\frac{-24-84}{25}
Tāpiri \frac{24x}{25} ki te -\frac{24x}{25}. Ka whakakore atu ngā kupu \frac{24x}{25} me -\frac{24x}{25}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-1.44y=\frac{-24-84}{25}
Tāpiri -\frac{6y}{25} ki te -\frac{6y}{5}.
-1.44y=-4.32
Tāpiri -0.96 ki te -3.36 mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=3
Whakawehea ngā taha e rua o te whārite ki te -1.44, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
1.2x+1.5\times 3=4.2
Whakaurua te 3 mō y ki 1.2x+1.5y=4.2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
1.2x+4.5=4.2
Whakareatia 1.5 ki te 3.
1.2x=-0.3
Me tango 4.5 mai i ngā taha e rua o te whārite.
x=-0.25
Whakawehea ngā taha e rua o te whārite ki te 1.2, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-0.25,y=3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}