\left\{ \begin{array} { c } { - 2 x - 4 y = - 12 } \\ { 2 x + 3 y = 9 } \end{array} \right.
Whakaoti mō x, y
x=0
y=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
-2x-4y=-12,2x+3y=9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-2x-4y=-12
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-2x=4y-12
Me tāpiri 4y ki ngā taha e rua o te whārite.
x=-\frac{1}{2}\left(4y-12\right)
Whakawehea ngā taha e rua ki te -2.
x=-2y+6
Whakareatia -\frac{1}{2} ki te -12+4y.
2\left(-2y+6\right)+3y=9
Whakakapia te -2y+6 mō te x ki tērā atu whārite, 2x+3y=9.
-4y+12+3y=9
Whakareatia 2 ki te -2y+6.
-y+12=9
Tāpiri -4y ki te 3y.
-y=-3
Me tango 12 mai i ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua ki te -1.
x=-2\times 3+6
Whakaurua te 3 mō y ki x=-2y+6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-6+6
Whakareatia -2 ki te 3.
x=0
Tāpiri 6 ki te -6.
x=0,y=3
Kua oti te pūnaha te whakatau.
-2x-4y=-12,2x+3y=9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-2&-4\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-12\\9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-2&-4\\2&3\end{matrix}\right))\left(\begin{matrix}-2&-4\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-4\\2&3\end{matrix}\right))\left(\begin{matrix}-12\\9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-2&-4\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-4\\2&3\end{matrix}\right))\left(\begin{matrix}-12\\9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&-4\\2&3\end{matrix}\right))\left(\begin{matrix}-12\\9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{-2\times 3-\left(-4\times 2\right)}&-\frac{-4}{-2\times 3-\left(-4\times 2\right)}\\-\frac{2}{-2\times 3-\left(-4\times 2\right)}&-\frac{2}{-2\times 3-\left(-4\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-12\\9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}&2\\-1&-1\end{matrix}\right)\left(\begin{matrix}-12\\9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\left(-12\right)+2\times 9\\-\left(-12\right)-9\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=0,y=3
Tangohia ngā huānga poukapa x me y.
-2x-4y=-12,2x+3y=9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\left(-2\right)x+2\left(-4\right)y=2\left(-12\right),-2\times 2x-2\times 3y=-2\times 9
Kia ōrite ai a -2x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -2.
-4x-8y=-24,-4x-6y=-18
Whakarūnātia.
-4x+4x-8y+6y=-24+18
Me tango -4x-6y=-18 mai i -4x-8y=-24 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-8y+6y=-24+18
Tāpiri -4x ki te 4x. Ka whakakore atu ngā kupu -4x me 4x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-2y=-24+18
Tāpiri -8y ki te 6y.
-2y=-6
Tāpiri -24 ki te 18.
y=3
Whakawehea ngā taha e rua ki te -2.
2x+3\times 3=9
Whakaurua te 3 mō y ki 2x+3y=9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+9=9
Whakareatia 3 ki te 3.
2x=0
Me tango 9 mai i ngā taha e rua o te whārite.
x=0
Whakawehea ngā taha e rua ki te 2.
x=0,y=3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}