\left\{ \begin{array} { c } { - 2 a + 2 b = 2 } \\ { 3 a - 2 b = 2 } \end{array} \right.
Whakaoti mō a, b
a=4
b=5
Tohaina
Kua tāruatia ki te papatopenga
-2a+2b=2,3a-2b=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-2a+2b=2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
-2a=-2b+2
Me tango 2b mai i ngā taha e rua o te whārite.
a=-\frac{1}{2}\left(-2b+2\right)
Whakawehea ngā taha e rua ki te -2.
a=b-1
Whakareatia -\frac{1}{2} ki te -2b+2.
3\left(b-1\right)-2b=2
Whakakapia te b-1 mō te a ki tērā atu whārite, 3a-2b=2.
3b-3-2b=2
Whakareatia 3 ki te b-1.
b-3=2
Tāpiri 3b ki te -2b.
b=5
Me tāpiri 3 ki ngā taha e rua o te whārite.
a=5-1
Whakaurua te 5 mō b ki a=b-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=4
Tāpiri -1 ki te 5.
a=4,b=5
Kua oti te pūnaha te whakatau.
-2a+2b=2,3a-2b=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-2&2\\3&-2\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}2\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-2&2\\3&-2\end{matrix}\right))\left(\begin{matrix}-2&2\\3&-2\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}-2&2\\3&-2\end{matrix}\right))\left(\begin{matrix}2\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-2&2\\3&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}-2&2\\3&-2\end{matrix}\right))\left(\begin{matrix}2\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}-2&2\\3&-2\end{matrix}\right))\left(\begin{matrix}2\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2\left(-2\right)-2\times 3}&-\frac{2}{-2\left(-2\right)-2\times 3}\\-\frac{3}{-2\left(-2\right)-2\times 3}&-\frac{2}{-2\left(-2\right)-2\times 3}\end{matrix}\right)\left(\begin{matrix}2\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}1&1\\\frac{3}{2}&1\end{matrix}\right)\left(\begin{matrix}2\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}2+2\\\frac{3}{2}\times 2+2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}4\\5\end{matrix}\right)
Mahia ngā tātaitanga.
a=4,b=5
Tangohia ngā huānga poukapa a me b.
-2a+2b=2,3a-2b=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\left(-2\right)a+3\times 2b=3\times 2,-2\times 3a-2\left(-2\right)b=-2\times 2
Kia ōrite ai a -2a me 3a, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -2.
-6a+6b=6,-6a+4b=-4
Whakarūnātia.
-6a+6a+6b-4b=6+4
Me tango -6a+4b=-4 mai i -6a+6b=6 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6b-4b=6+4
Tāpiri -6a ki te 6a. Ka whakakore atu ngā kupu -6a me 6a, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2b=6+4
Tāpiri 6b ki te -4b.
2b=10
Tāpiri 6 ki te 4.
b=5
Whakawehea ngā taha e rua ki te 2.
3a-2\times 5=2
Whakaurua te 5 mō b ki 3a-2b=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
3a-10=2
Whakareatia -2 ki te 5.
3a=12
Me tāpiri 10 ki ngā taha e rua o te whārite.
a=4
Whakawehea ngā taha e rua ki te 3.
a=4,b=5
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}