\left\{ \begin{array} { c } { - ( 3 x - 2 ) = y - 2 } \\ { - ( 2 x + y ) = 2 ( y - x ) - 3 } \end{array} \right.
Whakaoti mō x, y
x=1
y=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
-3x+2=y-2
Whakaarohia te whārite tuatahi. Hei kimi i te tauaro o 3x-2, kimihia te tauaro o ia taurangi.
-3x+2-y=-2
Tangohia te y mai i ngā taha e rua.
-3x-y=-2-2
Tangohia te 2 mai i ngā taha e rua.
-3x-y=-4
Tangohia te 2 i te -2, ka -4.
-2x-y=2\left(y-x\right)-3
Whakaarohia te whārite tuarua. Hei kimi i te tauaro o 2x+y, kimihia te tauaro o ia taurangi.
-2x-y=2y-2x-3
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te y-x.
-2x-y-2y=-2x-3
Tangohia te 2y mai i ngā taha e rua.
-2x-3y=-2x-3
Pahekotia te -y me -2y, ka -3y.
-2x-3y+2x=-3
Me tāpiri te 2x ki ngā taha e rua.
-3y=-3
Pahekotia te -2x me 2x, ka 0.
y=\frac{-3}{-3}
Whakawehea ngā taha e rua ki te -3.
y=1
Whakawehea te -3 ki te -3, kia riro ko 1.
-3x-1=-4
Whakaarohia te whārite tuatahi. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
-3x=-4+1
Me tāpiri te 1 ki ngā taha e rua.
-3x=-3
Tāpirihia te -4 ki te 1, ka -3.
x=\frac{-3}{-3}
Whakawehea ngā taha e rua ki te -3.
x=1
Whakawehea te -3 ki te -3, kia riro ko 1.
x=1 y=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}