\left\{ \begin{array} { c } { \frac { 2 x - 1 } { 2 } + \frac { y - 3 } { 3 } = \frac { 11 } { 6 } } \\ { - \frac { 2 x } { 5 } + \frac { y - 1 } { 10 } = - \frac { 6 } { 5 } } \end{array} \right.
Whakaoti mō x, y
x=3
y=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\left(2x-1\right)+2\left(y-3\right)=11
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,3,6.
6x-3+2\left(y-3\right)=11
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 2x-1.
6x-3+2y-6=11
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te y-3.
6x-9+2y=11
Tangohia te 6 i te -3, ka -9.
6x+2y=11+9
Me tāpiri te 9 ki ngā taha e rua.
6x+2y=20
Tāpirihia te 11 ki te 9, ka 20.
-2\times 2x+y-1=-12
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 10, arā, te tauraro pātahi he tino iti rawa te kitea o 5,10.
-4x+y-1=-12
Whakareatia te -2 ki te 2, ka -4.
-4x+y=-12+1
Me tāpiri te 1 ki ngā taha e rua.
-4x+y=-11
Tāpirihia te -12 ki te 1, ka -11.
6x+2y=20,-4x+y=-11
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
6x+2y=20
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
6x=-2y+20
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{6}\left(-2y+20\right)
Whakawehea ngā taha e rua ki te 6.
x=-\frac{1}{3}y+\frac{10}{3}
Whakareatia \frac{1}{6} ki te -2y+20.
-4\left(-\frac{1}{3}y+\frac{10}{3}\right)+y=-11
Whakakapia te \frac{-y+10}{3} mō te x ki tērā atu whārite, -4x+y=-11.
\frac{4}{3}y-\frac{40}{3}+y=-11
Whakareatia -4 ki te \frac{-y+10}{3}.
\frac{7}{3}y-\frac{40}{3}=-11
Tāpiri \frac{4y}{3} ki te y.
\frac{7}{3}y=\frac{7}{3}
Me tāpiri \frac{40}{3} ki ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua o te whārite ki te \frac{7}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{-1+10}{3}
Whakaurua te 1 mō y ki x=-\frac{1}{3}y+\frac{10}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=3
Tāpiri \frac{10}{3} ki te -\frac{1}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=3,y=1
Kua oti te pūnaha te whakatau.
3\left(2x-1\right)+2\left(y-3\right)=11
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,3,6.
6x-3+2\left(y-3\right)=11
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 2x-1.
6x-3+2y-6=11
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te y-3.
6x-9+2y=11
Tangohia te 6 i te -3, ka -9.
6x+2y=11+9
Me tāpiri te 9 ki ngā taha e rua.
6x+2y=20
Tāpirihia te 11 ki te 9, ka 20.
-2\times 2x+y-1=-12
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 10, arā, te tauraro pātahi he tino iti rawa te kitea o 5,10.
-4x+y-1=-12
Whakareatia te -2 ki te 2, ka -4.
-4x+y=-12+1
Me tāpiri te 1 ki ngā taha e rua.
-4x+y=-11
Tāpirihia te -12 ki te 1, ka -11.
6x+2y=20,-4x+y=-11
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}6&2\\-4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\-11\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}6&2\\-4&1\end{matrix}\right))\left(\begin{matrix}6&2\\-4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&2\\-4&1\end{matrix}\right))\left(\begin{matrix}20\\-11\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}6&2\\-4&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&2\\-4&1\end{matrix}\right))\left(\begin{matrix}20\\-11\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&2\\-4&1\end{matrix}\right))\left(\begin{matrix}20\\-11\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6-2\left(-4\right)}&-\frac{2}{6-2\left(-4\right)}\\-\frac{-4}{6-2\left(-4\right)}&\frac{6}{6-2\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}20\\-11\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{14}&-\frac{1}{7}\\\frac{2}{7}&\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}20\\-11\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{14}\times 20-\frac{1}{7}\left(-11\right)\\\frac{2}{7}\times 20+\frac{3}{7}\left(-11\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=1
Tangohia ngā huānga poukapa x me y.
3\left(2x-1\right)+2\left(y-3\right)=11
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,3,6.
6x-3+2\left(y-3\right)=11
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 2x-1.
6x-3+2y-6=11
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te y-3.
6x-9+2y=11
Tangohia te 6 i te -3, ka -9.
6x+2y=11+9
Me tāpiri te 9 ki ngā taha e rua.
6x+2y=20
Tāpirihia te 11 ki te 9, ka 20.
-2\times 2x+y-1=-12
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua o te whārite ki te 10, arā, te tauraro pātahi he tino iti rawa te kitea o 5,10.
-4x+y-1=-12
Whakareatia te -2 ki te 2, ka -4.
-4x+y=-12+1
Me tāpiri te 1 ki ngā taha e rua.
-4x+y=-11
Tāpirihia te -12 ki te 1, ka -11.
6x+2y=20,-4x+y=-11
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-4\times 6x-4\times 2y=-4\times 20,6\left(-4\right)x+6y=6\left(-11\right)
Kia ōrite ai a 6x me -4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 6.
-24x-8y=-80,-24x+6y=-66
Whakarūnātia.
-24x+24x-8y-6y=-80+66
Me tango -24x+6y=-66 mai i -24x-8y=-80 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-8y-6y=-80+66
Tāpiri -24x ki te 24x. Ka whakakore atu ngā kupu -24x me 24x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-14y=-80+66
Tāpiri -8y ki te -6y.
-14y=-14
Tāpiri -80 ki te 66.
y=1
Whakawehea ngā taha e rua ki te -14.
-4x+1=-11
Whakaurua te 1 mō y ki -4x+y=-11. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-4x=-12
Me tango 1 mai i ngā taha e rua o te whārite.
x=3
Whakawehea ngā taha e rua ki te -4.
x=3,y=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}