Whakaoti mō λ
\lambda =9
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\lambda ^ { 3 } - 27 \lambda ^ { 2 } + 243 \lambda - 729 = 0
Tohaina
Kua tāruatia ki te papatopenga
±729,±243,±81,±27,±9,±3,±1
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -729, ā, ka wehea e q te whakarea arahanga 1. Whakarārangitia ngā kaitono katoa \frac{p}{q}.
\lambda =9
Kimihia tētahi pūtake pērā mā te whakamātau i ngā uara tau tōpū katoa, e tīmata ana i te mea iti rawa mā te uara pū. Mēnā kāore he pūtake tau tōpū e kitea, whakamātauria ngā hautanga.
\lambda ^{2}-18\lambda +81=0
Mā te whakatakotoranga Tauwehe, he tauwehe te \lambda -k o te pūrau mō ia pūtake k. Whakawehea te \lambda ^{3}-27\lambda ^{2}+243\lambda -729 ki te \lambda -9, kia riro ko \lambda ^{2}-18\lambda +81. Whakaotihia te whārite ina ōrite te hua ki te 0.
\lambda =\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 1\times 81}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -18 mō te b, me te 81 mō te c i te ture pūrua.
\lambda =\frac{18±0}{2}
Mahia ngā tātaitai.
\lambda =9
He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}