Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int _{6}^{10}\left(-\frac{x^{3}}{3}+\frac{3\times 14733x}{3}\right)\times 0\times 6x\mathrm{d}x
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 14733x ki te \frac{3}{3}.
\int _{6}^{10}\frac{-x^{3}+3\times 14733x}{3}\times 0\times 6x\mathrm{d}x
Tā te mea he rite te tauraro o -\frac{x^{3}}{3} me \frac{3\times 14733x}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\int _{6}^{10}\frac{-x^{3}+44199x}{3}\times 0\times 6x\mathrm{d}x
Mahia ngā whakarea i roto o -x^{3}+3\times 14733x.
\int _{6}^{10}\frac{-x^{3}+44199x}{3}\times 0x\mathrm{d}x
Whakareatia te 0 ki te 6, ka 0.
\int _{6}^{10}0\mathrm{d}x
Ko te tau i whakarea ki te kore ka hua ko te kore.
\int 0\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
0
Kimihia te tau tōpū o 0 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
0+0
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
0
Whakarūnātia.