Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int x+\sin(x)+12\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int x\mathrm{d}x+\int \sin(x)\mathrm{d}x+\int 12\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
\frac{x^{2}}{2}+\int \sin(x)\mathrm{d}x+\int 12\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}.
\frac{x^{2}}{2}-\cos(x)+\int 12\mathrm{d}x
Whakamahia te \int \sin(x)\mathrm{d}x=-\cos(x) mai i te ripanga o ngā tau tōpū pātahi kia whakaputa i te huanga.
\frac{x^{2}}{2}-\cos(x)+12x
Kimihia te tau tōpū o 12 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
\frac{10^{2}}{2}-\cos(10)+10\times 12-\left(\frac{5^{2}}{2}-\cos(5)+5\times 12\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{1}{2}\left(-2\cos(10)+195+2\cos(5)\right)
Whakarūnātia.