Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int -x^{2}+13x-30\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int -x^{2}\mathrm{d}x+\int 13x\mathrm{d}x+\int -30\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
-\int x^{2}\mathrm{d}x+13\int x\mathrm{d}x+\int -30\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
-\frac{x^{3}}{3}+13\int x\mathrm{d}x+\int -30\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}. Whakareatia -1 ki te \frac{x^{3}}{3}.
-\frac{x^{3}}{3}+\frac{13x^{2}}{2}+\int -30\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia 13 ki te \frac{x^{2}}{2}.
-\frac{x^{3}}{3}+\frac{13x^{2}}{2}-30x
Kimihia te tau tōpū o -30 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
-\frac{10^{3}}{3}+\frac{13}{2}\times 10^{2}-30\times 10-\left(-\frac{3^{3}}{3}+\frac{13}{2}\times 3^{2}-30\times 3\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{343}{6}
Whakarūnātia.