Aromātai
\frac{125153}{460}\approx 272.07173913
Tohaina
Kua tāruatia ki te papatopenga
\int _{2}^{7}\left(41.12x-\frac{5}{2}\left(x-2\right)\right)\times \frac{7}{23}\mathrm{d}x
Pahekotia te -2\left(x-2\right) me -\frac{x-2}{2}, ka -\frac{5}{2}\left(x-2\right).
\int _{2}^{7}\left(41.12x-\frac{5}{2}x-\frac{5}{2}\left(-2\right)\right)\times \frac{7}{23}\mathrm{d}x
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{5}{2} ki te x-2.
\int _{2}^{7}\left(41.12x-\frac{5}{2}x+\frac{-5\left(-2\right)}{2}\right)\times \frac{7}{23}\mathrm{d}x
Tuhia te -\frac{5}{2}\left(-2\right) hei hautanga kotahi.
\int _{2}^{7}\left(41.12x-\frac{5}{2}x+\frac{10}{2}\right)\times \frac{7}{23}\mathrm{d}x
Whakareatia te -5 ki te -2, ka 10.
\int _{2}^{7}\left(41.12x-\frac{5}{2}x+5\right)\times \frac{7}{23}\mathrm{d}x
Whakawehea te 10 ki te 2, kia riro ko 5.
\int _{2}^{7}\left(\frac{1931}{50}x+5\right)\times \frac{7}{23}\mathrm{d}x
Pahekotia te 41.12x me -\frac{5}{2}x, ka \frac{1931}{50}x.
\int _{2}^{7}\frac{1931}{50}x\times \frac{7}{23}+5\times \frac{7}{23}\mathrm{d}x
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1931}{50}x+5 ki te \frac{7}{23}.
\int _{2}^{7}\frac{1931\times 7}{50\times 23}x+5\times \frac{7}{23}\mathrm{d}x
Me whakarea te \frac{1931}{50} ki te \frac{7}{23} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\int _{2}^{7}\frac{13517}{1150}x+5\times \frac{7}{23}\mathrm{d}x
Mahia ngā whakarea i roto i te hautanga \frac{1931\times 7}{50\times 23}.
\int _{2}^{7}\frac{13517}{1150}x+\frac{5\times 7}{23}\mathrm{d}x
Tuhia te 5\times \frac{7}{23} hei hautanga kotahi.
\int _{2}^{7}\frac{13517}{1150}x+\frac{35}{23}\mathrm{d}x
Whakareatia te 5 ki te 7, ka 35.
\int \frac{13517x}{1150}+\frac{35}{23}\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int \frac{13517x}{1150}\mathrm{d}x+\int \frac{35}{23}\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
\frac{13517\int x\mathrm{d}x}{1150}+\int \frac{35}{23}\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{13517x^{2}}{2300}+\int \frac{35}{23}\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia \frac{13517}{1150} ki te \frac{x^{2}}{2}.
\frac{13517x^{2}}{2300}+\frac{35x}{23}
Kimihia te tau tōpū o \frac{35}{23} mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
\frac{13517}{2300}\times 7^{2}+\frac{35}{23}\times 7-\left(\frac{13517}{2300}\times 2^{2}+\frac{35}{23}\times 2\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{125153}{460}
Whakarūnātia.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}