Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int _{122}^{328}\left(2-\left(x^{2}-4x+4\right)\right)^{2}-\left(2-0\times 5\right)^{2}\mathrm{d}x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-2\right)^{2}.
\int _{122}^{328}\left(2-x^{2}+4x-4\right)^{2}-\left(2-0\times 5\right)^{2}\mathrm{d}x
Hei kimi i te tauaro o x^{2}-4x+4, kimihia te tauaro o ia taurangi.
\int _{122}^{328}\left(-2-x^{2}+4x\right)^{2}-\left(2-0\times 5\right)^{2}\mathrm{d}x
Tangohia te 4 i te 2, ka -2.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-\left(2-0\times 5\right)^{2}\mathrm{d}x
Pūrua -2-x^{2}+4x.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-\left(2-0\right)^{2}\mathrm{d}x
Whakareatia te 0 ki te 5, ka 0.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-2^{2}\mathrm{d}x
Tangohia te 0 i te 2, ka 2.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x+4-4\mathrm{d}x
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\int _{122}^{328}x^{4}-8x^{3}+20x^{2}-16x\mathrm{d}x
Tangohia te 4 i te 4, ka 0.
\int x^{4}-8x^{3}+20x^{2}-16x\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int x^{4}\mathrm{d}x+\int -8x^{3}\mathrm{d}x+\int 20x^{2}\mathrm{d}x+\int -16x\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
\int x^{4}\mathrm{d}x-8\int x^{3}\mathrm{d}x+20\int x^{2}\mathrm{d}x-16\int x\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{x^{5}}{5}-8\int x^{3}\mathrm{d}x+20\int x^{2}\mathrm{d}x-16\int x\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{4}\mathrm{d}x ki te \frac{x^{5}}{5}.
\frac{x^{5}}{5}-2x^{4}+20\int x^{2}\mathrm{d}x-16\int x\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{3}\mathrm{d}x ki te \frac{x^{4}}{4}. Whakareatia -8 ki te \frac{x^{4}}{4}.
\frac{x^{5}}{5}-2x^{4}+\frac{20x^{3}}{3}-16\int x\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}. Whakareatia 20 ki te \frac{x^{3}}{3}.
\frac{x^{5}}{5}-2x^{4}+\frac{20x^{3}}{3}-8x^{2}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia -16 ki te \frac{x^{2}}{2}.
\frac{328^{5}}{5}-2\times 328^{4}+\frac{20}{3}\times 328^{3}-8\times 328^{2}-\left(\frac{122^{5}}{5}-2\times 122^{4}+\frac{20}{3}\times 122^{3}-8\times 122^{2}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{10970799276608}{15}
Whakarūnātia.