Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int 3x^{3}-2x+5\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int 3x^{3}\mathrm{d}x+\int -2x\mathrm{d}x+\int 5\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
3\int x^{3}\mathrm{d}x-2\int x\mathrm{d}x+\int 5\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{3x^{4}}{4}-2\int x\mathrm{d}x+\int 5\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{3}\mathrm{d}x ki te \frac{x^{4}}{4}. Whakareatia 3 ki te \frac{x^{4}}{4}.
\frac{3x^{4}}{4}-x^{2}+\int 5\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia -2 ki te \frac{x^{2}}{2}.
\frac{3x^{4}}{4}-x^{2}+5x
Kimihia te tau tōpū o 5 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
\frac{3}{4}\times 3^{4}-3^{2}+5\times 3-\left(\frac{3}{4}\times 1^{4}-1^{2}+5\times 1\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
62
Whakarūnātia.