Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int _{0\times 0}^{121}2x\mathrm{d}x-0
Whakareatia te 0 ki te 0, ka 0.
\int _{0}^{121}2x\mathrm{d}x-0
Whakareatia te 0 ki te 0, ka 0.
\int _{0}^{121}2x\mathrm{d}x+0
Whakareatia te -1 ki te 0, ka 0.
\int _{0}^{121}2x\mathrm{d}x
Ko te tau i tāpiria he kore ka hua koia tonu.
\int 2x\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
2\int x\mathrm{d}x
Whakatauwehetia te pūmau mā te whakamahi i te \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
x^{2}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia 2 ki te \frac{x^{2}}{2}.
121^{2}-0^{2}
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
14641
Whakarūnātia.