Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int _{0}^{8}\left(-0.55361x+0.083x^{2}\right)x\mathrm{d}x
Whakamahia te āhuatanga tohatoha hei whakarea te 6.67x-x^{2} ki te -0.083.
\int _{0}^{8}-0.55361x^{2}+0.083x^{3}\mathrm{d}x
Whakamahia te āhuatanga tohatoha hei whakarea te -0.55361x+0.083x^{2} ki te x.
\int -\frac{55361x^{2}}{100000}+\frac{83x^{3}}{1000}\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int -\frac{55361x^{2}}{100000}\mathrm{d}x+\int \frac{83x^{3}}{1000}\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
-\frac{55361\int x^{2}\mathrm{d}x}{100000}+\frac{83\int x^{3}\mathrm{d}x}{1000}
Whakatauwehea te pūmau i ēnei kīanga katoa.
-\frac{55361x^{3}}{300000}+\frac{83\int x^{3}\mathrm{d}x}{1000}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}. Whakareatia -0.55361 ki te \frac{x^{3}}{3}.
-\frac{55361x^{3}}{300000}+\frac{83x^{4}}{4000}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{3}\mathrm{d}x ki te \frac{x^{4}}{4}. Whakareatia 0.083 ki te \frac{x^{4}}{4}.
-\frac{55361}{300000}\times 8^{3}+\frac{83}{4000}\times 8^{4}-\left(-\frac{55361}{300000}\times 0^{3}+\frac{83}{4000}\times 0^{4}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
-\frac{88976}{9375}
Whakarūnātia.