Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int _{0}^{8}-133x^{2}\left(-\frac{1}{12}\right)\mathrm{d}x
Whakareatia te x ki te x, ka x^{2}.
\int _{0}^{8}\frac{-133\left(-1\right)}{12}x^{2}\mathrm{d}x
Tuhia te -133\left(-\frac{1}{12}\right) hei hautanga kotahi.
\int _{0}^{8}\frac{133}{12}x^{2}\mathrm{d}x
Whakareatia te -133 ki te -1, ka 133.
\int \frac{133x^{2}}{12}\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\frac{133\int x^{2}\mathrm{d}x}{12}
Whakatauwehetia te pūmau mā te whakamahi i te \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{133x^{3}}{36}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}.
\frac{133}{36}\times 8^{3}-\frac{133}{36}\times 0^{3}
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{17024}{9}
Whakarūnātia.