Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int _{0}^{5}\frac{1}{2}x+2\mathrm{d}x
Pahekotia te x me -\frac{x}{2}, ka \frac{1}{2}x.
\int \frac{x}{2}+2\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int \frac{x}{2}\mathrm{d}x+\int 2\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
\frac{\int x\mathrm{d}x}{2}+\int 2\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{x^{2}}{4}+\int 2\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia \frac{1}{2} ki te \frac{x^{2}}{2}.
\frac{x^{2}}{4}+2x
Kimihia te tau tōpū o 2 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
\frac{5^{2}}{4}+2\times 5-\left(\frac{0^{2}}{4}+2\times 0\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{65}{4}
Whakarūnātia.