Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int _{0}^{4}-0.88x-0.44x^{2}+0.8+0.4x\mathrm{d}x
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 4.4x-4 ki ia tau o -0.2-0.1x.
\int _{0}^{4}-0.48x-0.44x^{2}+0.8\mathrm{d}x
Pahekotia te -0.88x me 0.4x, ka -0.48x.
\int -\frac{12x}{25}-\frac{11x^{2}}{25}+0.8\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int -\frac{12x}{25}\mathrm{d}x+\int -\frac{11x^{2}}{25}\mathrm{d}x+\int 0.8\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
-\frac{12\int x\mathrm{d}x}{25}-\frac{11\int x^{2}\mathrm{d}x}{25}+\int 0.8\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
-\frac{6x^{2}}{25}-\frac{11\int x^{2}\mathrm{d}x}{25}+\int 0.8\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia -0.48 ki te \frac{x^{2}}{2}.
-\frac{6x^{2}}{25}-\frac{11x^{3}}{75}+\int 0.8\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}. Whakareatia -0.44 ki te \frac{x^{3}}{3}.
-\frac{6x^{2}}{25}-\frac{11x^{3}}{75}+\frac{4x}{5}
Kimihia te tau tōpū o 0.8 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
-\frac{6}{25}\times 4^{2}-\frac{11}{75}\times 4^{3}+0.8\times 4-\left(-\frac{6}{25}\times 0^{2}-\frac{11}{75}\times 0^{3}+0.8\times 0\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
-\frac{752}{75}
Whakarūnātia.