Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int _{0}^{4}\left(2x^{2}-525x\right)\left(1-0x\right)\mathrm{d}x
Whakareatia te 0 ki te 125, ka 0.
\int _{0}^{4}\left(2x^{2}-525x\right)\left(1-0\right)\mathrm{d}x
Ko te tau i whakarea ki te kore ka hua ko te kore.
\int _{0}^{4}\left(2x^{2}-525x\right)\times 1\mathrm{d}x
Tangohia te 0 i te 1, ka 1.
\int _{0}^{4}2x^{2}-525x\mathrm{d}x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x^{2}-525x ki te 1.
\int 2x^{2}-525x\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int 2x^{2}\mathrm{d}x+\int -525x\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
2\int x^{2}\mathrm{d}x-525\int x\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{2x^{3}}{3}-525\int x\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}. Whakareatia 2 ki te \frac{x^{3}}{3}.
\frac{2x^{3}}{3}-\frac{525x^{2}}{2}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia -525 ki te \frac{x^{2}}{2}.
\frac{2}{3}\times 4^{3}-\frac{525}{2}\times 4^{2}-\left(\frac{2}{3}\times 0^{3}-\frac{525}{2}\times 0^{2}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
-\frac{12472}{3}
Whakarūnātia.