Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int _{0}^{3}-546x-91x^{2}-1188-198x\mathrm{d}x
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 91x+198 ki ia tau o -6-x.
\int _{0}^{3}-744x-91x^{2}-1188\mathrm{d}x
Pahekotia te -546x me -198x, ka -744x.
\int -744x-91x^{2}-1188\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int -744x\mathrm{d}x+\int -91x^{2}\mathrm{d}x+\int -1188\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
-744\int x\mathrm{d}x-91\int x^{2}\mathrm{d}x+\int -1188\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
-372x^{2}-91\int x^{2}\mathrm{d}x+\int -1188\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia -744 ki te \frac{x^{2}}{2}.
-372x^{2}-\frac{91x^{3}}{3}+\int -1188\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}. Whakareatia -91 ki te \frac{x^{3}}{3}.
-372x^{2}-\frac{91x^{3}}{3}-1188x
Kimihia te tau tōpū o -1188 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
-372\times 3^{2}-\frac{91}{3}\times 3^{3}-1188\times 3-\left(-372\times 0^{2}-\frac{91}{3}\times 0^{3}-1188\times 0\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
-7731
Whakarūnātia.