Aromātai
-773.1
Tohaina
Kua tāruatia ki te papatopenga
\int _{0}^{3}-54.6x-9.1x^{2}-118.8-19.8x\mathrm{d}x
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 9.1x+19.8 ki ia tau o -6-x.
\int _{0}^{3}-74.4x-9.1x^{2}-118.8\mathrm{d}x
Pahekotia te -54.6x me -19.8x, ka -74.4x.
\int -\frac{372x}{5}-\frac{91x^{2}}{10}-118.8\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int -\frac{372x}{5}\mathrm{d}x+\int -\frac{91x^{2}}{10}\mathrm{d}x+\int -118.8\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
-\frac{372\int x\mathrm{d}x}{5}-\frac{91\int x^{2}\mathrm{d}x}{10}+\int -118.8\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
-\frac{186x^{2}}{5}-\frac{91\int x^{2}\mathrm{d}x}{10}+\int -118.8\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia -74.4 ki te \frac{x^{2}}{2}.
-\frac{186x^{2}}{5}-\frac{91x^{3}}{30}+\int -118.8\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}. Whakareatia -9.1 ki te \frac{x^{3}}{3}.
-\frac{186x^{2}}{5}-\frac{91x^{3}}{30}-\frac{594x}{5}
Kimihia te tau tōpū o -118.8 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
-\frac{186}{5}\times 3^{2}-\frac{91}{30}\times 3^{3}-118.8\times 3-\left(-\frac{186}{5}\times 0^{2}-\frac{91}{30}\times 0^{3}-118.8\times 0\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
-\frac{7731}{10}
Whakarūnātia.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}