Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int _{0}^{3}810+135x+570x+95x^{2}\mathrm{d}x
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 135+95x ki ia tau o 6+x.
\int _{0}^{3}810+705x+95x^{2}\mathrm{d}x
Pahekotia te 135x me 570x, ka 705x.
\int 810+705x+95x^{2}\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int 810\mathrm{d}x+\int 705x\mathrm{d}x+\int 95x^{2}\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
\int 810\mathrm{d}x+705\int x\mathrm{d}x+95\int x^{2}\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
810x+705\int x\mathrm{d}x+95\int x^{2}\mathrm{d}x
Kimihia te tau tōpū o 810 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
810x+\frac{705x^{2}}{2}+95\int x^{2}\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia 705 ki te \frac{x^{2}}{2}.
810x+\frac{705x^{2}}{2}+\frac{95x^{3}}{3}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}. Whakareatia 95 ki te \frac{x^{3}}{3}.
810\times 3+\frac{705}{2}\times 3^{2}+\frac{95}{3}\times 3^{3}-\left(810\times 0+\frac{705}{2}\times 0^{2}+\frac{95}{3}\times 0^{3}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{12915}{2}
Whakarūnātia.