Aromātai
-\frac{225}{4}=-56.25
Tohaina
Kua tāruatia ki te papatopenga
\int _{0}^{3}-3x^{2}\left(-x\right)+12x\left(-x\right)+2\left(-x\right)\mathrm{d}x
Whakamahia te āhuatanga tohatoha hei whakarea te -3x^{2}+12x+2 ki te -x.
\int _{0}^{3}3x^{2}x+12x\left(-x\right)+2\left(-x\right)\mathrm{d}x
Whakareatia te -3 ki te -1, ka 3.
\int _{0}^{3}3x^{3}+12x\left(-x\right)+2\left(-x\right)\mathrm{d}x
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 1 kia riro ai te 3.
\int _{0}^{3}3x^{3}+12x^{2}\left(-1\right)+2\left(-1\right)x\mathrm{d}x
Whakareatia te x ki te x, ka x^{2}.
\int _{0}^{3}3x^{3}-12x^{2}+2\left(-1\right)x\mathrm{d}x
Whakareatia te 12 ki te -1, ka -12.
\int _{0}^{3}3x^{3}-12x^{2}-2x\mathrm{d}x
Whakareatia te 2 ki te -1, ka -2.
\int 3x^{3}-12x^{2}-2x\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int 3x^{3}\mathrm{d}x+\int -12x^{2}\mathrm{d}x+\int -2x\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
3\int x^{3}\mathrm{d}x-12\int x^{2}\mathrm{d}x-2\int x\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{3x^{4}}{4}-12\int x^{2}\mathrm{d}x-2\int x\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{3}\mathrm{d}x ki te \frac{x^{4}}{4}. Whakareatia 3 ki te \frac{x^{4}}{4}.
\frac{3x^{4}}{4}-4x^{3}-2\int x\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}. Whakareatia -12 ki te \frac{x^{3}}{3}.
\frac{3x^{4}}{4}-4x^{3}-x^{2}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia -2 ki te \frac{x^{2}}{2}.
\frac{3}{4}\times 3^{4}-4\times 3^{3}-3^{2}-\left(\frac{3}{4}\times 0^{4}-4\times 0^{3}-0^{2}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
-\frac{225}{4}
Whakarūnātia.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}