Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int _{0}^{3}-3x^{2}\left(-x\right)+12x\left(-x\right)+2\left(-x\right)\mathrm{d}x
Whakamahia te āhuatanga tohatoha hei whakarea te -3x^{2}+12x+2 ki te -x.
\int _{0}^{3}3x^{2}x+12x\left(-x\right)+2\left(-x\right)\mathrm{d}x
Whakareatia te -3 ki te -1, ka 3.
\int _{0}^{3}3x^{3}+12x\left(-x\right)+2\left(-x\right)\mathrm{d}x
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 1 kia riro ai te 3.
\int _{0}^{3}3x^{3}+12x^{2}\left(-1\right)+2\left(-1\right)x\mathrm{d}x
Whakareatia te x ki te x, ka x^{2}.
\int _{0}^{3}3x^{3}-12x^{2}+2\left(-1\right)x\mathrm{d}x
Whakareatia te 12 ki te -1, ka -12.
\int _{0}^{3}3x^{3}-12x^{2}-2x\mathrm{d}x
Whakareatia te 2 ki te -1, ka -2.
\int 3x^{3}-12x^{2}-2x\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int 3x^{3}\mathrm{d}x+\int -12x^{2}\mathrm{d}x+\int -2x\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
3\int x^{3}\mathrm{d}x-12\int x^{2}\mathrm{d}x-2\int x\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{3x^{4}}{4}-12\int x^{2}\mathrm{d}x-2\int x\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{3}\mathrm{d}x ki te \frac{x^{4}}{4}. Whakareatia 3 ki te \frac{x^{4}}{4}.
\frac{3x^{4}}{4}-4x^{3}-2\int x\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}. Whakareatia -12 ki te \frac{x^{3}}{3}.
\frac{3x^{4}}{4}-4x^{3}-x^{2}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia -2 ki te \frac{x^{2}}{2}.
\frac{3}{4}\times 3^{4}-4\times 3^{3}-3^{2}-\left(\frac{3}{4}\times 0^{4}-4\times 0^{3}-0^{2}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
-\frac{225}{4}
Whakarūnātia.