Aromātai
\frac{76132}{1875}\approx 40.603733333
Tohaina
Kua tāruatia ki te papatopenga
\int _{0}^{2}54.38x^{2}\times \frac{7}{25}\mathrm{d}x
Whakareatia te x ki te x, ka x^{2}.
\int _{0}^{2}\frac{2719}{50}x^{2}\times \frac{7}{25}\mathrm{d}x
Me tahuri ki tau ā-ira 54.38 ki te hautau \frac{5438}{100}. Whakahekea te hautanga \frac{5438}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\int _{0}^{2}\frac{2719\times 7}{50\times 25}x^{2}\mathrm{d}x
Me whakarea te \frac{2719}{50} ki te \frac{7}{25} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\int _{0}^{2}\frac{19033}{1250}x^{2}\mathrm{d}x
Mahia ngā whakarea i roto i te hautanga \frac{2719\times 7}{50\times 25}.
\int \frac{19033x^{2}}{1250}\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\frac{19033\int x^{2}\mathrm{d}x}{1250}
Whakatauwehetia te pūmau mā te whakamahi i te \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{19033x^{3}}{3750}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}.
\frac{19033}{3750}\times 2^{3}-\frac{19033}{3750}\times 0^{3}
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{76132}{1875}
Whakarūnātia.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}