Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int _{0}^{2}\left(24+24x+0x^{2}\right)x\mathrm{d}x
Whakareatia te 0 ki te 6, ka 0.
\int _{0}^{2}\left(24+24x+0\right)x\mathrm{d}x
Ko te tau i whakarea ki te kore ka hua ko te kore.
\int _{0}^{2}\left(24+24x\right)x\mathrm{d}x
Tāpirihia te 24 ki te 0, ka 24.
\int _{0}^{2}24x+24x^{2}\mathrm{d}x
Whakamahia te āhuatanga tohatoha hei whakarea te 24+24x ki te x.
\int 24x+24x^{2}\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int 24x\mathrm{d}x+\int 24x^{2}\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
24\int x\mathrm{d}x+24\int x^{2}\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
12x^{2}+24\int x^{2}\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia 24 ki te \frac{x^{2}}{2}.
12x^{2}+8x^{3}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}. Whakareatia 24 ki te \frac{x^{3}}{3}.
12\times 2^{2}+8\times 2^{3}-\left(12\times 0^{2}+8\times 0^{3}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
112
Whakarūnātia.