Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int _{0}^{2}\left(0.36x-0.05x^{2}\right)x\mathrm{d}x
Whakamahia te āhuatanga tohatoha hei whakarea te -3.6x+0.5x^{2} ki te -0.1.
\int _{0}^{2}0.36x^{2}-0.05x^{3}\mathrm{d}x
Whakamahia te āhuatanga tohatoha hei whakarea te 0.36x-0.05x^{2} ki te x.
\int \frac{9x^{2}}{25}-\frac{x^{3}}{20}\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int \frac{9x^{2}}{25}\mathrm{d}x+\int -\frac{x^{3}}{20}\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
\frac{9\int x^{2}\mathrm{d}x}{25}-\frac{\int x^{3}\mathrm{d}x}{20}
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{3x^{3}}{25}-\frac{\int x^{3}\mathrm{d}x}{20}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}. Whakareatia 0.36 ki te \frac{x^{3}}{3}.
\frac{3x^{3}}{25}-\frac{x^{4}}{80}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{3}\mathrm{d}x ki te \frac{x^{4}}{4}. Whakareatia -0.05 ki te \frac{x^{4}}{4}.
\frac{3}{25}\times 2^{3}-\frac{2^{4}}{80}-\left(\frac{3}{25}\times 0^{3}-\frac{0^{4}}{80}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{19}{25}
Whakarūnātia.