Aromātai
37812.5
Tohaina
Kua tāruatia ki te papatopenga
\int _{0}^{11}625\left(11-y\right)\mathrm{d}y
Whakareatia te 62.5 ki te 10, ka 625.
\int _{0}^{11}6875-625y\mathrm{d}y
Whakamahia te āhuatanga tohatoha hei whakarea te 625 ki te 11-y.
\int 6875-625y\mathrm{d}y
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int 6875\mathrm{d}y+\int -625y\mathrm{d}y
Kōmitimititia te kīanga tapeke mā te kīanga.
\int 6875\mathrm{d}y-625\int y\mathrm{d}y
Whakatauwehea te pūmau i ēnei kīanga katoa.
6875y-625\int y\mathrm{d}y
Kimihia te tau tōpū o 6875 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}y=ay.
6875y-\frac{625y^{2}}{2}
Nā te mea \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int y\mathrm{d}y ki te \frac{y^{2}}{2}. Whakareatia -625 ki te \frac{y^{2}}{2}.
6875\times 11-\frac{625}{2}\times 11^{2}-\left(6875\times 0-\frac{625}{2}\times 0^{2}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{75625}{2}
Whakarūnātia.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}