Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int _{0}^{\log_{10}\left(1+\sqrt{2}\right)}\left(\frac{e^{x}-e^{x}}{2}\right)^{14}\mathrm{d}x
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 3 me te 11 kia riro ai te 14.
\int _{0}^{\log_{10}\left(1+\sqrt{2}\right)}\left(\frac{0}{2}\right)^{14}\mathrm{d}x
Pahekotia te e^{x} me -e^{x}, ka 0.
\int _{0}^{\log_{10}\left(1+\sqrt{2}\right)}0^{14}\mathrm{d}x
Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
\int _{0}^{\log_{10}\left(1+\sqrt{2}\right)}0\mathrm{d}x
Tātaihia te 0 mā te pū o 14, kia riro ko 0.
\int 0\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
0
Kimihia te tau tōpū o 0 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
0+0
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
0
Whakarūnātia.