Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Tohaina

\int 5x+8585+68e^{15}\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int 5x\mathrm{d}x+\int 8585\mathrm{d}x+\int 68e^{15}\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
5\int x\mathrm{d}x+\int 8585\mathrm{d}x+68\int e^{15}\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{5x^{2}}{2}+\int 8585\mathrm{d}x+68\int e^{15}\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia 5 ki te \frac{x^{2}}{2}.
\frac{5x^{2}}{2}+8585x+68\int e^{15}\mathrm{d}x
Kimihia te tau tōpū o 8585 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
\frac{5x^{2}}{2}+8585x+68e^{15}x
Kimihia te tau tōpū o e^{15} mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
\frac{5}{2}\times 45^{2}+8585\times 45+68e^{15}\times 45-\left(\frac{5}{2}\left(-9\right)^{2}+8585\left(-9\right)+68e^{15}\left(-9\right)\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
468450+3672e^{15}
Whakarūnātia.