Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int _{-1}^{3}\left(x^{2}-x\right)\left(x+2\right)\mathrm{d}x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-1.
\int _{-1}^{3}x^{3}+2x^{2}-x^{2}-2x\mathrm{d}x
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o x^{2}-x ki ia tau o x+2.
\int _{-1}^{3}x^{3}+x^{2}-2x\mathrm{d}x
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
\int x^{3}+x^{2}-2x\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int x^{3}\mathrm{d}x+\int x^{2}\mathrm{d}x+\int -2x\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
\int x^{3}\mathrm{d}x+\int x^{2}\mathrm{d}x-2\int x\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{x^{4}}{4}+\int x^{2}\mathrm{d}x-2\int x\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{3}\mathrm{d}x ki te \frac{x^{4}}{4}.
\frac{x^{4}}{4}+\frac{x^{3}}{3}-2\int x\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}.
\frac{x^{4}}{4}+\frac{x^{3}}{3}-x^{2}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia -2 ki te \frac{x^{2}}{2}.
\frac{3^{4}}{4}+\frac{3^{3}}{3}-3^{2}-\left(\frac{\left(-1\right)^{4}}{4}+\frac{\left(-1\right)^{3}}{3}-\left(-1\right)^{2}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{64}{3}
Whakarūnātia.