Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki y
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int 3y\mathrm{d}y+\int 7\mathrm{d}y
Kōmitimititia te kīanga tapeke mā te kīanga.
3\int y\mathrm{d}y+\int 7\mathrm{d}y
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{3y^{2}}{2}+\int 7\mathrm{d}y
Nā te mea \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int y\mathrm{d}y ki te \frac{y^{2}}{2}. Whakareatia 3 ki te \frac{y^{2}}{2}.
\frac{3y^{2}}{2}+7y
Kimihia te tau tōpū o 7 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}y=ay.
\frac{3y^{2}}{2}+7y+С
Mēnā ko F\left(y\right) he pārōnaki kōaro o f\left(y\right), kāti ko te huinga o ngā pārōnaki kōaro katoa o f\left(y\right) ka whakaaturia e F\left(y\right)+C. Nō reira, me tāpiri te pūmau o te whakatōpūtanga C\in \mathrm{R} ki te otinga.