Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki y
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int 2y-2\mathrm{d}y
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te y-1.
\int 2y\mathrm{d}y+\int -2\mathrm{d}y
Kōmitimititia te kīanga tapeke mā te kīanga.
2\int y\mathrm{d}y+\int -2\mathrm{d}y
Whakatauwehea te pūmau i ēnei kīanga katoa.
y^{2}+\int -2\mathrm{d}y
Nā te mea \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int y\mathrm{d}y ki te \frac{y^{2}}{2}. Whakareatia 2 ki te \frac{y^{2}}{2}.
y^{2}-2y
Kimihia te tau tōpū o -2 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}y=ay.
y^{2}-2y+С
Mēnā ko F\left(y\right) he pārōnaki kōaro o f\left(y\right), kāti ko te huinga o ngā pārōnaki kōaro katoa o f\left(y\right) ka whakaaturia e F\left(y\right)+C. Nō reira, me tāpiri te pūmau o te whakatōpūtanga C\in \mathrm{R} ki te otinga.