Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki y
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int \left(3y-y^{2}+9-3y\right)\times 2.3\mathrm{d}y
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o y+3 ki ia tau o 3-y.
\int \left(-y^{2}+9\right)\times 2.3\mathrm{d}y
Pahekotia te 3y me -3y, ka 0.
\int -2.3y^{2}+20.7\mathrm{d}y
Whakamahia te āhuatanga tohatoha hei whakarea te -y^{2}+9 ki te 2.3.
\int -\frac{23y^{2}}{10}\mathrm{d}y+\int 20.7\mathrm{d}y
Kōmitimititia te kīanga tapeke mā te kīanga.
-\frac{23\int y^{2}\mathrm{d}y}{10}+\int 20.7\mathrm{d}y
Whakatauwehea te pūmau i ēnei kīanga katoa.
-\frac{23y^{3}}{30}+\int 20.7\mathrm{d}y
Nā te mea \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int y^{2}\mathrm{d}y ki te \frac{y^{3}}{3}. Whakareatia -2.3 ki te \frac{y^{3}}{3}.
-\frac{23y^{3}}{30}+\frac{207y}{10}
Kimihia te tau tōpū o 20.7 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}y=ay.
-\frac{23y^{3}}{30}+\frac{207y}{10}+С
Mēnā ko F\left(y\right) he pārōnaki kōaro o f\left(y\right), kāti ko te huinga o ngā pārōnaki kōaro katoa o f\left(y\right) ka whakaaturia e F\left(y\right)+C. Nō reira, me tāpiri te pūmau o te whakatōpūtanga C\in \mathrm{R} ki te otinga.