Aromātai
-\frac{23y^{3}}{30}+\frac{207y}{10}+С
Kimi Pārōnaki e ai ki y
\frac{207-23y^{2}}{10}
Tohaina
Kua tāruatia ki te papatopenga
\int \left(3y-y^{2}+9-3y\right)\times 2.3\mathrm{d}y
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o y+3 ki ia tau o 3-y.
\int \left(-y^{2}+9\right)\times 2.3\mathrm{d}y
Pahekotia te 3y me -3y, ka 0.
\int -2.3y^{2}+20.7\mathrm{d}y
Whakamahia te āhuatanga tohatoha hei whakarea te -y^{2}+9 ki te 2.3.
\int -\frac{23y^{2}}{10}\mathrm{d}y+\int 20.7\mathrm{d}y
Kōmitimititia te kīanga tapeke mā te kīanga.
-\frac{23\int y^{2}\mathrm{d}y}{10}+\int 20.7\mathrm{d}y
Whakatauwehea te pūmau i ēnei kīanga katoa.
-\frac{23y^{3}}{30}+\int 20.7\mathrm{d}y
Nā te mea \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int y^{2}\mathrm{d}y ki te \frac{y^{3}}{3}. Whakareatia -2.3 ki te \frac{y^{3}}{3}.
-\frac{23y^{3}}{30}+\frac{207y}{10}
Kimihia te tau tōpū o 20.7 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}y=ay.
-\frac{23y^{3}}{30}+\frac{207y}{10}+С
Mēnā ko F\left(y\right) he pārōnaki kōaro o f\left(y\right), kāti ko te huinga o ngā pārōnaki kōaro katoa o f\left(y\right) ka whakaaturia e F\left(y\right)+C. Nō reira, me tāpiri te pūmau o te whakatōpūtanga C\in \mathrm{R} ki te otinga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}