Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int 2x^{5}\mathrm{d}x+\int 4x^{3}\mathrm{d}x+\int -3x\mathrm{d}x+\int 8\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
2\int x^{5}\mathrm{d}x+4\int x^{3}\mathrm{d}x-3\int x\mathrm{d}x+\int 8\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{x^{6}}{3}+4\int x^{3}\mathrm{d}x-3\int x\mathrm{d}x+\int 8\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{5}\mathrm{d}x ki te \frac{x^{6}}{6}. Whakareatia 2 ki te \frac{x^{6}}{6}.
\frac{x^{6}}{3}+x^{4}-3\int x\mathrm{d}x+\int 8\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{3}\mathrm{d}x ki te \frac{x^{4}}{4}. Whakareatia 4 ki te \frac{x^{4}}{4}.
\frac{x^{6}}{3}+x^{4}-\frac{3x^{2}}{2}+\int 8\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia -3 ki te \frac{x^{2}}{2}.
\frac{x^{6}}{3}+x^{4}-\frac{3x^{2}}{2}+8x
Kimihia te tau tōpū o 8 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
\frac{x^{6}}{3}+x^{4}-\frac{3x^{2}}{2}+8x+С
Mēnā ko F\left(x\right) he pārōnaki kōaro o f\left(x\right), kāti ko te huinga o ngā pārōnaki kōaro katoa o f\left(x\right) ka whakaaturia e F\left(x\right)+C. Nō reira, me tāpiri te pūmau o te whakatōpūtanga C\in \mathrm{R} ki te otinga.