Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int 27x^{3}+54x^{2}+36x+8\mathrm{d}x
Whakamahia te ture huarua \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} hei whakaroha \left(3x+2\right)^{3}.
\int 27x^{3}\mathrm{d}x+\int 54x^{2}\mathrm{d}x+\int 36x\mathrm{d}x+\int 8\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
27\int x^{3}\mathrm{d}x+54\int x^{2}\mathrm{d}x+36\int x\mathrm{d}x+\int 8\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{27x^{4}}{4}+54\int x^{2}\mathrm{d}x+36\int x\mathrm{d}x+\int 8\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{3}\mathrm{d}x ki te \frac{x^{4}}{4}. Whakareatia 27 ki te \frac{x^{4}}{4}.
\frac{27x^{4}}{4}+18x^{3}+36\int x\mathrm{d}x+\int 8\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}. Whakareatia 54 ki te \frac{x^{3}}{3}.
\frac{27x^{4}}{4}+18x^{3}+18x^{2}+\int 8\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia 36 ki te \frac{x^{2}}{2}.
\frac{27x^{4}}{4}+18x^{3}+18x^{2}+8x
Kimihia te tau tōpū o 8 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
\frac{27x^{4}}{4}+18x^{3}+18x^{2}+8x+С
Mēnā ko F\left(x\right) he pārōnaki kōaro o f\left(x\right), kāti ko te huinga o ngā pārōnaki kōaro katoa o f\left(x\right) ka whakaaturia e F\left(x\right)+C. Nō reira, me tāpiri te pūmau o te whakatōpūtanga C\in \mathrm{R} ki te otinga.