Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int \left(\sqrt{x}\right)^{2}-5^{2}\mathrm{d}x
Whakaarohia te \left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\int x-5^{2}\mathrm{d}x
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
\int x-25\mathrm{d}x
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
\int x\mathrm{d}x+\int -25\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
\frac{x^{2}}{2}+\int -25\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}.
\frac{x^{2}}{2}-25x
Kimihia te tau tōpū o -25 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
\frac{x^{2}}{2}-25x+С
Mēnā ko F\left(x\right) he pārōnaki kōaro o f\left(x\right), kāti ko te huinga o ngā pārōnaki kōaro katoa o f\left(x\right) ka whakaaturia e F\left(x\right)+C. Nō reira, me tāpiri te pūmau o te whakatōpūtanga C\in \mathrm{R} ki te otinga.