Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki y
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int y-y^{2}\mathrm{d}y
Whakamahia te āhuatanga tohatoha hei whakarea te y ki te 1-y.
\int y\mathrm{d}y+\int -y^{2}\mathrm{d}y
Kōmitimititia te kīanga tapeke mā te kīanga.
\int y\mathrm{d}y-\int y^{2}\mathrm{d}y
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{y^{2}}{2}-\int y^{2}\mathrm{d}y
Nā te mea \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int y\mathrm{d}y ki te \frac{y^{2}}{2}.
\frac{y^{2}}{2}-\frac{y^{3}}{3}
Nā te mea \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int y^{2}\mathrm{d}y ki te \frac{y^{3}}{3}. Whakareatia -1 ki te \frac{y^{3}}{3}.
\frac{y^{2}}{2}-\frac{y^{3}}{3}+С
Mēnā ko F\left(y\right) he pārōnaki kōaro o f\left(y\right), kāti ko te huinga o ngā pārōnaki kōaro katoa o f\left(y\right) ka whakaaturia e F\left(y\right)+C. Nō reira, me tāpiri te pūmau o te whakatōpūtanga C\in \mathrm{R} ki te otinga.