Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int x^{2}y\delta \delta y\mathrm{d}x
Whakareatia te x ki te x, ka x^{2}.
\int x^{2}y^{2}\delta \delta \mathrm{d}x
Whakareatia te y ki te y, ka y^{2}.
\int x^{2}y^{2}\delta ^{2}\mathrm{d}x
Whakareatia te \delta ki te \delta , ka \delta ^{2}.
y^{2}\delta ^{2}\int x^{2}\mathrm{d}x
Whakatauwehetia te pūmau mā te whakamahi i te \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
y^{2}\delta ^{2}\times \frac{x^{3}}{3}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}.
\frac{y^{2}\delta ^{2}x^{3}}{3}
Whakarūnātia.
\frac{y^{2}\delta ^{2}x^{3}}{3}+С
Mēnā ko F\left(x\right) he pārōnaki kōaro o f\left(x\right), kāti ko te huinga o ngā pārōnaki kōaro katoa o f\left(x\right) ka whakaaturia e F\left(x\right)+C. Nō reira, me tāpiri te pūmau o te whakatōpūtanga C\in \mathrm{R} ki te otinga.