Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int 9x^{5}-12x^{3}+4x\mathrm{d}x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 9x^{4}-12x^{2}+4.
\int 9x^{5}\mathrm{d}x+\int -12x^{3}\mathrm{d}x+\int 4x\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
9\int x^{5}\mathrm{d}x-12\int x^{3}\mathrm{d}x+4\int x\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{3x^{6}}{2}-12\int x^{3}\mathrm{d}x+4\int x\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{5}\mathrm{d}x ki te \frac{x^{6}}{6}. Whakareatia 9 ki te \frac{x^{6}}{6}.
\frac{3x^{6}}{2}-3x^{4}+4\int x\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{3}\mathrm{d}x ki te \frac{x^{4}}{4}. Whakareatia -12 ki te \frac{x^{4}}{4}.
\frac{3x^{6}}{2}-3x^{4}+2x^{2}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia 4 ki te \frac{x^{2}}{2}.
\frac{3x^{6}}{2}-3x^{4}+2x^{2}+С
Mēnā ko F\left(x\right) he pārōnaki kōaro o f\left(x\right), kāti ko te huinga o ngā pārōnaki kōaro katoa o f\left(x\right) ka whakaaturia e F\left(x\right)+C. Nō reira, me tāpiri te pūmau o te whakatōpūtanga C\in \mathrm{R} ki te otinga.