Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int 2x^{2}+3x\mathrm{d}x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 2x+3.
\int 2x^{2}\mathrm{d}x+\int 3x\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
2\int x^{2}\mathrm{d}x+3\int x\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{2x^{3}}{3}+3\int x\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}. Whakareatia 2 ki te \frac{x^{3}}{3}.
\frac{2x^{3}}{3}+\frac{3x^{2}}{2}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia 3 ki te \frac{x^{2}}{2}.
\frac{2x^{3}}{3}+\frac{3x^{2}}{2}+С
Mēnā ko F\left(x\right) he pārōnaki kōaro o f\left(x\right), kāti ko te huinga o ngā pārōnaki kōaro katoa o f\left(x\right) ka whakaaturia e F\left(x\right)+C. Nō reira, me tāpiri te pūmau o te whakatōpūtanga C\in \mathrm{R} ki te otinga.