Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-\frac{2}{\sqrt{x}}
Tuhia anō te \frac{1}{x^{\frac{3}{2}}} hei x^{-\frac{3}{2}}. Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{-\frac{3}{2}}\mathrm{d}x ki te \frac{x^{-\frac{1}{2}}}{-\frac{1}{2}}. Whakarūnāhia me te tahuri mai i te āhua taupū ki te āhua pūtake.
-\frac{2}{\sqrt{x}}+С
Mēnā ko F\left(x\right) he pārōnaki kōaro o f\left(x\right), kāti ko te huinga o ngā pārōnaki kōaro katoa o f\left(x\right) ka whakaaturia e F\left(x\right)+C. Nō reira, me tāpiri te pūmau o te whakatōpūtanga C\in \mathrm{R} ki te otinga.