Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int _{4}^{9}\left(\sqrt{x}\right)^{2}+\sqrt{x}\mathrm{d}x
Whakamahia te āhuatanga tohatoha hei whakarea te \sqrt{x}+1 ki te \sqrt{x}.
\int _{4}^{9}x+\sqrt{x}\mathrm{d}x
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
\int x+\sqrt{x}\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int x\mathrm{d}x+\int \sqrt{x}\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
\frac{x^{2}}{2}+\int \sqrt{x}\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}.
\frac{x^{2}}{2}+\frac{2x^{\frac{3}{2}}}{3}
Tuhia anō te \sqrt{x} hei x^{\frac{1}{2}}. Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{\frac{1}{2}}\mathrm{d}x ki te \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Whakarūnātia.
\frac{9^{2}}{2}+\frac{2}{3}\times 9^{\frac{3}{2}}-\left(\frac{4^{2}}{2}+\frac{2}{3}\times 4^{\frac{3}{2}}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{271}{6}
Whakarūnātia.