Aromātai
12\pi \approx 37.699111843
Pātaitai
Integration
5 raruraru e ōrite ana ki:
\int _ { 3 } ^ { 5 } ( \frac { 3 } { y } ) 2 \pi y d y
Tohaina
Kua tāruatia ki te papatopenga
\int _{3}^{5}\frac{3\times 2}{y}\pi y\mathrm{d}y
Tuhia te \frac{3}{y}\times 2 hei hautanga kotahi.
\int _{3}^{5}\frac{3\times 2\pi }{y}y\mathrm{d}y
Tuhia te \frac{3\times 2}{y}\pi hei hautanga kotahi.
\int _{3}^{5}3\times 2\pi \mathrm{d}y
Me whakakore te y me te y.
\int _{3}^{5}6\pi \mathrm{d}y
Whakareatia te 3 ki te 2, ka 6.
\int 6\pi \mathrm{d}y
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
6\pi y
Kimihia te tau tōpū o 6\pi mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}y=ay.
6\pi \times 5-6\pi \times 3
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
12\pi
Whakarūnātia.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}