Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int x^{5}+5x+6\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int x^{5}\mathrm{d}x+\int 5x\mathrm{d}x+\int 6\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
\int x^{5}\mathrm{d}x+5\int x\mathrm{d}x+\int 6\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{x^{6}}{6}+5\int x\mathrm{d}x+\int 6\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{5}\mathrm{d}x ki te \frac{x^{6}}{6}.
\frac{x^{6}}{6}+\frac{5x^{2}}{2}+\int 6\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia 5 ki te \frac{x^{2}}{2}.
\frac{x^{6}}{6}+\frac{5x^{2}}{2}+6x
Kimihia te tau tōpū o 6 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
\frac{5^{6}}{6}+\frac{5}{2}\times 5^{2}+6\times 5-\left(\frac{2^{6}}{6}+\frac{5}{2}\times 2^{2}+6\times 2\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
2664
Whakarūnātia.