Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int 3x^{5}-2x^{3}+x\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int 3x^{5}\mathrm{d}x+\int -2x^{3}\mathrm{d}x+\int x\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
3\int x^{5}\mathrm{d}x-2\int x^{3}\mathrm{d}x+\int x\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{x^{6}}{2}-2\int x^{3}\mathrm{d}x+\int x\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{5}\mathrm{d}x ki te \frac{x^{6}}{6}. Whakareatia 3 ki te \frac{x^{6}}{6}.
\frac{x^{6}}{2}-\frac{x^{4}}{2}+\int x\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{3}\mathrm{d}x ki te \frac{x^{4}}{4}. Whakareatia -2 ki te \frac{x^{4}}{4}.
\frac{x^{6}-x^{4}+x^{2}}{2}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}.
\frac{4^{6}}{2}-\frac{4^{4}}{2}+\frac{4^{2}}{2}-\left(\frac{2^{6}}{2}-\frac{2^{4}}{2}+\frac{2^{2}}{2}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
1902
Whakarūnātia.