Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int _{2}^{3}551368+3z-1\mathrm{d}z
Tātaihia te 82 mā te pū o 3, kia riro ko 551368.
\int _{2}^{3}551367+3z\mathrm{d}z
Tangohia te 1 i te 551368, ka 551367.
\int 551367+3z\mathrm{d}z
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int 551367\mathrm{d}z+\int 3z\mathrm{d}z
Kōmitimititia te kīanga tapeke mā te kīanga.
\int 551367\mathrm{d}z+3\int z\mathrm{d}z
Whakatauwehea te pūmau i ēnei kīanga katoa.
551367z+3\int z\mathrm{d}z
Kimihia te tau tōpū o 551367 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}z=az.
551367z+\frac{3z^{2}}{2}
Nā te mea \int z^{k}\mathrm{d}z=\frac{z^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int z\mathrm{d}z ki te \frac{z^{2}}{2}. Whakareatia 3 ki te \frac{z^{2}}{2}.
551367\times 3+\frac{3}{2}\times 3^{2}-\left(551367\times 2+\frac{3}{2}\times 2^{2}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{1102749}{2}
Whakarūnātia.